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Abstract

A multiblock numerical method has been employed for the calculation of three-dimensional ¯ow and heat
transfer in rotating two-pass square channels with smooth walls. The ®nite-analytic method solves Reynolds-
averaged Navier±Stokes equations in conjunction with a near-wall second-order Reynolds stress (second-moment)
closure model and a two-layer k±e isotropic eddy viscosity model. Comparison of second-moment and two-layer

calculations with experimental data clearly demonstrate that the secondary ¯ows in rotating two-pass channels have
been strongly in¯uenced by the Reynolds stress anisotropy resulting from the Coriolis and centrifugal buoyancy
forces as well as the 1808 wall curvatures. The near-wall second-moment closure model provides accurate heat

transfer predictions which agree well with measured data. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Advanced gas turbine blades are subjected to high

thermal stress due to increased turbine inlet tempera-

ture. E�cient internal convective cooling is required to
maintain allowable blade temperatures and lengthen

blade life. Characteristics of ¯ow and local heat trans-
fer in the cooling passages are important in the predic-

tion of blade temperature and life. Some experimental

and numerical studies have been conducted in this
®eld. We restrict our review to turbulent ¯ow and heat

transfer studies in rotating coolant passages with
smooth walls.

Wagner et al. [1] performed the most thorough

experimental investigation on the e�ects of Coriolis

and buoyancy forces on local heat transfer coe�-

cient distributions of a multi-pass square channel

with smooth walls. They suggested that di�erences

in heat transfer between rotating and nonrotating

¯ow conditions is primarily due to the secondary

¯ows associated with Coriolis and centrifugal buoy-

ancy forces. The local heat transfer coe�cients on

the trailing surface of the ®rst coolant passage

(radially-outward ¯ow) increase with increasing ro-

tational speed and wall-to-coolant temperature di�er-

ence. However, the local heat transfer coe�cients

on the leading surface decrease with increasing ro-

tational speed (up to Ro = 0.24) but increase with

wall-to-coolant temperature di�erences. The heat

transfer coe�cient for the radially inward ¯owing pas-

sage increases on the leading surface and decreases on

the trailing surface, which is the opposite of the e�ect

in the outward ¯owing passage. Since Wagner et al. [1]

experiments are very close to typical turbine blade
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cooling conditions, their data has been used by various
researchers as baseline comparisons.

Prakash and Zerkle [2] performed the numerical

prediction of ¯ow and heat transfer in a radially-
outward rotating square duct. They employed the

high-Reynolds-number version of the k±e model
with the wall function approximation. Their results

indicated that the rotational buoyancy e�ects are
signi®cant under engine operating conditions. They

also concluded that the high-Re k±e turbulence
model could not provide accurate heat transfer pre-

dictions and that more re®ned turbulence models
should be used to get better results. Bo et al. [3]

numerically predicted fully developed turbulent ¯ow
and heat transfer in a radially-outward rotating

square (one-pass) duct. They used three turbulence

models: a k±e eddy viscosity model (EVM) with
one equation in the near wall region, a low-Re k±e
eddy viscosity model, and a low-Re algebraic stress
model (ASM). The k±e/one-equation EVM produces

reasonable heat transfer predictions, but some de-
®ciencies emerge at the higher rotation number. In

contrast, the low-Re k±e EVM predictions showed
unrealistic behavior, while the low-Re ASM results

are close to the Wagner et al. [1] measurements.
Dutta et al. [4] predicted the heat transfer from

leading and trailing sides of a rotating square chan-
nel with radially outward ¯ow (one-pass). They

modeled terms for the Coriolis and buoyancy e�ects
in the k±e transport equations, that show better

agreement with the Wagner et al. [1] experimental
data.

Besserman and Tanrikut [5] calculated the ¯ow and

heat transfer in a stationary square duct with a 1808
bend. They showed that the wall-function approach

failed to accurately predict the heat transfer in high
gradient regions whereas the predictions with wall inte-

gration provided better agreement with the measure-
ments of Wagner et al. [1]. Sathyamurthy et al. [6]

presented numerical results on the rotating square duct
with a 1808 bend (two-pass). The standard k±e turbu-

lence model with wall function treatment was adopted.

They indicated that either a low Reynolds number k±e
model, two-layer k±e model or second-moment closure

model is needed for accurate prediction of ¯ow and
heat transfer for this complex ¯ow situation. McGrath

and Tse [7] performed the computation on the four
pass, serpentine passage with three 1808 turns which is

identical to that of Wagner et al. [1] using the k±e tur-
bulence model with two wall treatments: the general-

ized wall function and the classical Van-Driest mixing
length formulation. The two-layer wall integration tur-

bulence model provides improvement over the wall
function simulation. Stephens et al. [8] predicted the

nature of the three-dimensional ¯ow induced by Corio-
lis force, centrifugal buoyancy and a 1808 bend in a

rotating two-pass square duct with smooth walls. The

computations were performed using a low Reynolds
number k±o model of turbulence and the computed

heat transfer coe�cient compared reasonably well with
Wagner et al. [1] experimental data except for the lead-

ing surface in the ®rst passage, where the heat transfer
coe�cients were overestimated by this model. Iacov-

ides et al. [9] explored turbulence modeling issues re-
lated to duct ¯ow in¯uenced by strong curvature and

rotation. They tested four turbulence models: the high-
Re k±e model with one-equation model in the near-

wall regions, the high-Re algebraic second-moment
(ASM) closure with one-equation near-wall model, the

low-Re ASM model in which the dissipation rate of
turbulence is obtained algebraically with the wall sub-

layers, and the low-Re ASM model in which the e
transport equation is solved over the entire domain.

The computations of ¯ow through a stationary 1808
bend suggested that turbulence anisotropy within the
duct core and the wall sublayer has a strong in¯uence

on the development of ¯ow a�ected by strong curva-
ture. In stationary case, the two low-Re ASM models

Nomenclature

Dh, D hydraulic diameter
h heat transfer coe�cient
K thermal conductivity of coolant

Nu local Nusselt number, hDh/K
Nuo Nusselt number in fully-developed turbu-

lent nonrotating tube ¯ow

Pr Prandtl number
Re Reynolds number, rWbDh/m
ri inner radius of bend

Ro rotation number, ODh/Wb

Rr radius from axis of rotation

S streamwise distance
T local coolant temperature
To coolant temperature at inlet

Tw wall temperature
Wb bulk velocity in streamwise direction
r density of coolant

Dr/r coolant-to-wall density ratio, (TwÿTo)/Tw

O rotational speed
y dimensionless temperature, (TÿTo)/

(TwÿTo)
m dynamic viscosity of coolant
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produced better predictions of the ¯ow development
than the other two turbulence models. In rotating case,

however, the complex ¯ow ®eld downstream of the
bend is not well reproduced by the low-Re ASM
models (they did not consider the energy transport in

the duct). Bonho� et al. [10] presented the heat trans-
fer predictions for rotating U-shaped coolant channels.
The di�erential Reynolds stress model (RSM) was

used for the calculation. The averaged heat transfer
predictions were close to Wagner et al. [1] experimental
results in the ®rst passage of the channel, while the

heat transfer in the second passage was overestimated
by RSM.
None of the above-mentioned studies accurately pre-

dicted the ¯ow and heat transfer behaviors in a rotat-

ing two-pass square duct with smooth walls under
typical turbine blade cooling conditions. Particularly,
accurate predictions in the 1808 bend and in the second

passage of the two-pass duct are lacking due to the
unsophisticated turbulence closure models used. There-
fore, there is a need to systematically evaluate the

capability of using the second-moment closure model
for accurate resolution of nonequilibrium turbulence
produced by strong wall curvatures and rotational

e�ects. This paper presents the prediction of ¯ow
characteristics and heat transfer results in a rotating
square duct with a 1808 bend which is the ®rst two
passages of the four-pass, serpentine passage that was

experimentally investigated by Wagner et al. [1]. The
computations were mainly performed by a near-wall
second-moment turbulence closure model, while a two-

layer k±e eddy viscosity model was also included for
comparison.

2. Governing equations

In the present study, calculations were performed
for a rotating two-pass square channel using the near-

wall second-order Reynolds stress closure model of
Chen [11,12] and two-layer eddy viscosity model of
Chen and Patel [13]. Both models were developed orig-

inally for incompressible ¯ows in nonrotating coordi-
nates. They have been generalized here to include the
e�ects of rotation and buoyancy. For completeness, we
shall summarize the generalized near-wall second-

moment closure and the two-layer eddy viscosity
model in the following:

2.1. Second-moment closure model

Consider the nondimensional Reynolds-averaged

Navier±Stokes equations in general curvilinear coordi-
nates (x i, t ), i = 1, 2, 3, for unsteady incompressible
¯ow

@r
@ t
� �rU m�,m � 0 �1�

r

�
@Ui

@ t
�U mUi

,m � Rim
,m

�
� 2rgilelmnOmUn

� rgmn�OiOmxn ÿ OmOnxi �

� ÿgimp,m � �mgmnUi
,n �,m �2�

where elmn is the third-rank permutation tensor and
Om is the coordinate rotation vector. The metric tensor
gmn and conjugate metric tensor gmn are given in Chen

et al. [14]. Rim � uium is the Reynolds stress tensor.
Overbars denote that the ensemble Reynolds averaging
and the summation convention is used for repeated in-

dices. The subscript, m represents the covariant deriva-
tive with respect to xm. U i and u i are contravariant
components of the mean and ¯uctuating velocities, t is

time and p is pressure.
In the present study, the ¯ow is considered incom-

pressible since the Mach number is quite low. How-

ever, the density in the centrifugal force terms is
approximated by r=roTo/T to account for the density
variations caused by the temperature di�erences. ro
and To are the density and temperature at the inlet of

the cooling channel.
The temperature T, is obtained from the energy

equation

rcp

�
@T

@ t
�UmT,m � umT 0

�

� gmn�KT,n�,m �
Dp

Dt
� F �3�

and F is the dissipation function de®ned by

F � ÿm�Um
,nU

n
,m � um,nu

n
,m � gijg

mn�Ui
,mU

j
,n � ui,mu

j
,n�� �4�

where T and T ' are the mean and ¯uctuating tempera-
ture ®elds, cp is the speci®c heat at constant pressure,
K is the thermal conductivity, and umT 0 is the kin-

ematic turbulent heat ¯ux.
The Reynolds stress tensor Rij � uiu j is the solution

of the transport equations

@Rij

@ t
�UmRij

,m � Pij �Dij
u �Dij

p �Dij
v � Fij ÿ eij �5�

where

production

Pij � ÿ�RimUj
,m � R jmUi

,m � ÿ 2elmnOm�gilR jn � g jlRin�

diffusion by um Dij
u � ÿ�uiu jum�,m
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diffusion by p 0 Dij
p � ÿg jm�uip 0=r�,m ÿ gim�u jp 0=r�,m

viscous diffusion Dij
v � ngmnRij

,mn

pressure±strain Fij � � p 0=r��gimu j
,m � g jmui,m �

and dissipation eij � 2ngmnui,mu
j
,n

.

To solve these equations, appropriate closure models
must be provided for the pressure±strain, di�usion and
dissipation terms. In the present study, the pressure±

strain correlation of Speziale et al. [15] was combined
with the near-wall Reynolds stress closure of Chen
[11,12] for detailed resolution of three-dimensional
boundary layer ¯ow all the way up to the solid walls.

For the sake of completeness, we will brie¯y summar-
ize the present near-wall second-moment closure model
in the following:

1. Di�usion Dij � Dij
u �Dij

p (Daly and Harlow [16])

Dij � C 0s

�
k

e
RmnRij

,m

�
,m

;C 0s � 0:22 �6�

2. Pressure±strain and dissipation F ijÿe ij (Speziale et
al. [15]; Chen [11,12])

Fij ÿ eij � �F
ij

1 � Fij
2 � Fij

w ÿ 2
3g

ije �7�

where

�F
ij

1 � ÿ �C1f1ÿ �1ÿ 1= �C1� fwgebij

� C2�1ÿ fw�e�gmnb
imb jn ÿ 1

3g
ijII�

�8�

Fij
2 � �C3 ÿ C �3II1=2�kSij � C4k�gmnb

imS jn

� gmnb
jmS in ÿ 2

3g
ijgmrgnsb

mnS rs�

� C5k�gmnb
imWjn � gmnb

jmWin� �9�

Fij
w � fwf0:45�Pij ÿ 2

3g
ijP � ÿ 0:03�Qij ÿ 2

3g
ijP �

� 0:08k�2Sij �g �10�

bij � Rij

2k
ÿ 1

3
gij; II � gmrgnsb

mnbrs �11�

Sij � 1
2 �g jmUi

,m � gimUj
,m �;

Wij � 1
2 �g jmUi

,m ÿ gimUj
,m �

�12�

P � 1
2gmnP

mn; Qij � ÿglm�ginR jl � g jnRil�Um
,n �13�

�C1 � C1 � C �1
P

e
;

fw � exp�ÿ�0:0184Re
���
k
p

y�4�,
�14�

where the model coe�cients (C1,C1
�,C2,C3,C3

�,C4,C5)

are equal to respectively 3.4, 1.80, 4.2, 0.8, 1.30,
1.25, 0.40. It should be remarked here that the coef-
®cient in fw was adjusted from 0.015 to 0.0184
based on the numerical optimizations for the pre-

sent test cases. Although the original coe�cient of
0.015 worked well for high Reynolds number ¯ows
considered in Chen [12], it was found to produce

too much damping e�ects for the low Reynolds
number ¯ows considered here. The new coe�cient
reduces the extent of the near-wall damping zone

and is more consistent with the two-layer k±e
results. It is also worthwhile to note that the e�ects
of the damping function fw diminishes exponentially

away from the solid surfaces with Fw
ij=0 in the fully

turbulent regions. Therefore, the present near-wall
Reynolds stress model automatically recovers the
high-Re SSG second-moment closure of Speziale et

al. [15] in the far-®eld. A more detailed description
of the present near-wall second-moment closure is
given in Chen [11,12].

In general, the turbulent heat ¯uxes umT 0 may also
be solved directly using second-order closure models
such as those shown in Launder [17]. In the current

study, however, we will use the generalized gradient
di�usion hypothesis (GGDH) given in Bo et al. [3]

umT 0 � ÿCy
k

e
RmnT,n; Cy � 0:225 �15�

It should be noted that the Cy value used here is some-
what lower than that proposed by Bo et al. [3] based

on extensive numerical optimizations performed in the
present calculations.
To complete the Reynolds stress closure, the rate of

turbulent kinetic energy dissipation e must also be
modeled. In the present study, the low Reynolds num-
ber model of Chen [12] was adopted as follows:

@e
@ t
�U me,m � f�ngmn � Ce

k

e
Rmn�e,ng,m

� Ce1�1� Ce4 fw� e
k
Pÿ Ce2 fe

ee�

k
� x

�16�

where the model coe�cients are (Ce, Ce1, Ce2,

Ce4)=(0.15, 1.35, 1.8, 1.0). The near-wall damping
function fw, fe and the source terms x and e� are given
in Chen [11,12].
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2.2. Two-layer k±e model

In order to facilitate a detailed assessment of the

present near-wall second-order Reynolds stress clo-
sure for turbulent ¯ow and heat transfer predictions,
calculations were also performed using the two-layer

isotropic eddy viscosity model of Chen and Patel
[13]. In this two-layer approach, the Reynolds stresses
are related to the mean rate of strain by

ÿrRij � 2mtS
ij ÿ 2

3g
ijrk, �17�

where mt is the eddy viscosity and k � gijuiu j=2 is the
turbulent kinetic energy. S ij is the contravariant com-
ponents of the rate of strain tensor given in Eq. (12).

Similarly, the turbulent heat ¯uxes can be related to
the mean temperature gradient as follows:

ÿrumT 0 � mt

Prt

gmnT,nPrt � 0:9, �18�

where Prt is the turbulent Prandtl number. Substi-
tution into (2) and (3) yields momentum and energy
equations for eddy viscosity turbulence modeling

r

�
@U i

@ t
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�
� rgilelmnOmU n
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,m
�2mt,mS
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� �m� mt�gmnUi
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�19�

r

�
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@ t
�U mT,m

�
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��
m
Pr
� mt

Prt

�
T,n

�
,m

�20�

where Pr is the Prandtl number. Eqs. (19) and (20) are
closed using the two-layer turbulence model of Chen
and Patel [13]. The approach utilizes a two-equation

k±e model for most of the ¯ow ®eld, but a one-
equation kÿl model in the viscous sublayer and bu�er
zone. The prescribed length scale (l ) circumvents nu-

merical problems often encountered with near-wall dis-
sipation calculations and reproduces the universal law-
of-the-wall pro®les in the laminar sublayer, bu�er
layer and logarithmic regions.

In the fully turbulent region, the conservation
equations for turbulent kinetic energy and its dissipa-
tion rate can be written:

r

�
@k

@ t
�Umk,m

�

� gmn

��
m� mt

sk

�
k,n

�
,m

�P� Pb ÿ re �21�

r

�
@ e
@ t
�Ume,m

�

� gmn

��
m� mt

se

�
e,n
�
,m

� e
k
�Ce1P� Ce3Pb ÿ Ce2re� �22�

where

P � 2gnpmtS
mnU p

,m �23�

Pb � mt

PrtT
gmn�OmOlxn ÿ OmOnxl�T,l �24�

The buoyancy generated turbulence production Pb

was proposed by Snider and Andrews [18] and the
model coe�cients (Cm, Ce1, Ce2, Ce3, sk, se) are ®xed

constants equal to 0.09, 1.44, 1.92, 0.9, 1.0, 1.3, re-
spectively.
In the near-wall region, the rate of turbulent dissipa-

tion is speci®ed in terms of k rather than being com-
puted from (22). From Chen and Patel [13]:

e � k3=2

le
�25�

where le is a dissipation length scale given by

le � Cly�1ÿ exp�ÿRy=Ae��; Ry �
���
k
p

y=n �26�

With k and e known, the eddy viscosity is found from

nt � Cm

���
k
p

lm, lm � Cly�1ÿ exp�ÿRy=Am�� �27�

The constants Cl, Am and Ae are chosen to yield a
smooth distribution of eddy viscosity between the two
regions, and take the values (Cl=0.418Cm

ÿ3/4, Am=70,

Ae=2Cl). A more detailed description of the two-layer
model is given in Chen and Patel [13].

3. Chimera RANS method

In the present study, the chimera RANS method of
Chen [11,12] and Chen and Chen [19] has been

further extended to include the e�ects of rotation
and buoyancy. The present method solves the mean
¯ow and turbulence quantities in arbitrary combi-
nation of embedded, overlapped, or matched grids

using a chimera domain decomposition approach. In
this approach, the solution domain is ®rst decom-
posed into a number of smaller blocks which facili-

tate e�cient adaption of di�erent block geometries,
¯ow solvers and boundary conditions for calculations
involving complex con®gurations and ¯ow conditions.

Within each computational block, the ®nite-analytic
numerical method of Chen and Chen [20] and Chen
et al. [14] was employed to solve the unsteady RANS
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equations on a general curvilinear, body-®tted coordi-

nate system. The coupling between the pressure and

velocity is accomplished using a hybrid PISO/SIM-

PLER algorithm given in Chen and Patel [21] and

Chen and Korpus [22]. The method satis®es continu-

ity of mass by requiring the contravariant velocities

to have a vanishing divergence at each time step.

Pressure is solved using the concept of pseudo-

velocities, and when combined with the ®nite-analytic

discretization gives the Poisson equation for pressure.

To ensure the proper conservation of mass and

momentum between linking grid blocks, the grid-

interface conservation techniques of Hubbard and

Chen [23] and Chen and Chen [19] were employed to

eliminate unphysical mass source resulting from the

interpolation errors between the chimera grid blocks.

More detailed descriptions of the chimera RANS
method were given in Chen and Huang [24] and

Chen and Liu [25].

4. Results and discussion

Calculations were performed for the multi-pass

square channel with smooth walls as tested by Wagner
et al. [1]. Fig. 1 shows the geometry and an enlarged
view of the numerical grids around the 1808 bend.

Two of the four side walls in the rotation direction are
denoted as the leading and the trailing surfaces, re-
spectively. The other two side walls are denoted the

inner and the outer surfaces. The length of both the
®rst pass and second pass are 14Dh. The inner radius

Fig. 1. Geometry and numerical grids.
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of curvature of the bend is 1.25Dh and the radius from
axis of rotation is 42Dh. All walls are heated to a con-

stant temperature. In this paper, the Reynolds number
was ®xed at 25,000 which is the typical operating con-
ditions of medium size gas turbines. Comparisons

between the calculations and measurements were made
for three di�erent rotation numbers of 0, 0.18 and
0.24, and four coolant-to-wall density ratios of 0, 0.07,

0.13 and 0.22. The Nusselt numbers presented herein
were normalized with a smooth tube correlation (Kays
and Crawford [26]) for fully developed, nonrotating,

turbulent ¯ow

Nuo � 0:0176Re0:8 �28�

The present numerical grid was generated using an
interactive gridding code GRIDGEN developed by

Steinbrenner et al. [27]. It was then reblocked into
several interlocked computational blocks to facilitate
the implementation of near-wall turbulence models

and speci®cation of boundary conditions. To provide
adequate resolutions of the viscous sublayer and buf-
fer layer adjacent to a solid surface, the minimum
grid spacing in the near-wall region is maintained at

10ÿ4 of the body length which corresponds to a wall
coordinate y+ of the order of 0.1. In all calculations,
the root-mean-square (rms) and maximum absolute

errors for both the mean ¯ow and turbulence quan-
tities were monitored for each computational block to
ensure complete convergence of the numerical sol-

utions. A convergence criterion of 10ÿ5 was used for
the maximum rms error in all computational blocks.
In all cases, the computer CPU time required for the

second-moment closure model is about twice of that
for the two-layer eddy viscosity model.
In the present calculations, a fully-developed turbu-

lent boundary layer pro®le was used at the entrance of

the duct. Since the fully-developed pro®les for mean
¯ow and turbulence quantities are not known analyti-
cally, a separate calculation was performed for a

straight duct to provide the inlet conditions at the duct
entrance. At the exit of the duct, the ¯ow was assumed
to be parabolic with zero-gradient boundary conditions

for mean velocity and all turbulence quantities, while
linear extrapolation was used for the pressure ®eld.
The coolant temperature was To (i.e., y=(TÿTo)/
(TwÿTo)=0) at the entrance of the duct and the wall

temperature was kept constant at T=Tw (y=1) on all
side walls.
A grid-re®nement study was performed using four

di�erent grid distributions of 41 � 41 � 111, 41 � 41 �
175, 61 � 61 � 111 and 81 � 81 � 111 with the im-
plementation of a general Chimera domain decompo-

sition technique (Hubbard and Chen [23]; Chen and
Chen [19]). The grid re®nement in the axial direction
has produced only minor changes in the bend region.

Fig. 2 shows a comparison of the calculated Nusselt
numbers on the leading surface (Ro=0.24, Dr/
r=0.13) for 41 � 41 � 111, 61 � 61 � 111 and 81 � 81
� 111 grid distribution with two-layer and second-
moment models. In the two-layer model, the Nusselt

number in the bend was improved by 9 and 15% re-
spectively with 61 � 61 � 111 and 81 � 81 � 111 grids.
The Nusselt number, however, was not signi®cantly

changed in the second-moment results except for the
turning section where a 10% improvement was
observed. All the results presented in the following dis-

cussions are based on an 81 � 81 � 111 grid for the
two-layer model and an 41� 41� 111 grid for the sec-
ond-moment model.

4.1. Velocity and temperature ®elds

The velocity, temperature ®elds and side-averaged
Nusselt numbers for both the nonrotating and rotating
square duct with 1808 bend are presented in this sec-

tion. For the sake of brevity, we shall present only the
details of the three-dimensional velocity and tempera-
ture ®elds for the second-moment solutions since the

second-order Reynolds stress model produced more
accurate results for all test cases considered. The two-
layer k±e results will be discussed only in the compari-

son of Nusselt number distributions to quantify the
e�ects of the Reynolds stress anisotropy.

Figure 3 shows the calculated secondary ¯ow vectors

and temperature contours at several axial stations
de®ned in Fig. 1 for the nonrotating case. It is seen
from Fig. 3C that the anisotropy of the turbulent Rey-

nolds stresses produced small secondary corner vortices
in the ®rst passage. In the bend, the centrifugal forces
and the associated pressure gradients (low pressure at
inner surface, high pressure at outer surface) produced

two counter-rotating vortices as shown in Fig. 3D
which convected ¯uid from the core toward the outer

Fig. 2. Grid re®nement study; Re=25,000.
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surface. This secondary ¯ow started to decrease in the
second passage and vanished almost completely at the
end of the second passage. The left column of Fig. 3

shows the isothermal contours in the duct. Before the
bend, the cooler ¯uids are located in the core region
(Fig. 3C). After the bend, however, the cooler ¯uid is

pushed toward the outer surface by the centrifugal
force induced by the streamline curvatures. This leads
to steep temperature gradients and hence high heat
transfer coe�cients on the outer wall after the bend as

shown in Fig. 3D±F.
Figure 4 shows the cross-stream velocity vectors and

the isothermal contours for the rotating case at

selected planes of Z/Dh=3.44, 8.39, 13.08 (locations
A, B and C in Fig. 1) in the ®rst passage, location D
in the bend and Z/Dh=13.36, 6.66 (locations E and F)

in the second passage. In the ®rst passage, the Coriolis
forces produce a cross-stream ¯ow pattern which

pushes the cold ¯uid from the core towards the trailing
surface and then returns along the side walls (i.e.,

inner and outer surfaces) where the ¯uid is heated. The
secondary ¯ow induced by the Coriolis forces also dis-

Fig. 4. Dimensionless temperature (y=(TÿTo)/(TwÿTo)) and

secondary-¯ow for rotating duct.

Fig. 3. Dimensionless temperature (y=(TÿTo)/(TwÿTo)) and

secondary-¯ows for nonrotating duct.
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torts the axial velocity pro®les. Initially a two-vortex

secondary ¯ow is formed near the inlet of the duct.
After about 3.4 diameters of ¯ow development, an
extra pair of counter-rotating vortices is observed

along the leading surface as shown in Fig. 4A. Farther
downstream, the two vortex structure is again reestab-
lished (Fig. 4B). This transient entry phenomenon is

also predicted by the present two-layer eddy viscosity
model, but the location of appearance of the four-vor-

tex pattern was farther downstream than that predicted
by the second moment closure model.
In the bend, the secondary ¯ow structure formed in

the ®rst passage is completely destroyed as shown in
Fig. 4D. The rotation-induced radially outward ¯ow,

as it enters the bend section of the duct, is accelerated
asymmetrically in the cross section. The heavier cold
¯uid near the trailing surface is ®rst accelerated and

then followed by the lighter ¯uid near the leading sur-
face in the duct cross section. This causes the ¯uid
near the trailing surface to be thrown towards the

outer side wall, resulting in the clockwise circulation in
the middle of the bend region.

In the second passage, the Coriolis force acts in the
opposite direction, compared to the one in the ®rst
passage, which pushes the cold ¯uid towards the lead-

ing surface. Fig. 4E shows the formation of two large
vortices with the larger one near the leading surface
and the smaller one near the trailing surface. This sec-

ondary ¯ow structure is produced by the interaction of
the circulation generated in the bend and the Coriolis

force due to the duct rotation. Farther downstream at
location 4-F, the peak cross¯ow velocities are still as
high as 9% of Wb. The secondary ¯ow at this station

is caused primarily by the Coriolis force as the e�ect
of bend diminishes gradually in the second passage.

For the nonrotating case, the computed axial vel-
ocity pro®les (not shown) shift toward the outer sur-
face in the bend, but return quickly to a fairly ¯at

pro®le in the second passage. A detailed examination
of the solutions reveals no axial ¯ow reversal in this
stationary duct. For the rotating case, the Coriolis

forces push the cold ¯uids toward the trailing surface
so that the centrifugal buoyancy force tends to slow

down the lighter ¯uid, producing a thicker boundary
layer near the leading surface and accelerates the
heavier ¯uid near the trailing surface. Thus, it causes

¯ow reversal in the streamwise direction on the leading
surface. In general, the reverse ¯ow region in the ®rst
passage increases with increasing coolant-to-wall den-

sity ratio and buoyancy. On the other hand, the Corio-
lis force in the second passage acts in the opposite

direction and pushes the cold ¯uids toward the leading
surface. Thus, the centrifugal buoyancy forces acceler-
ate the lighter ¯uid near the trailing surface and, con-

sequently, ¯atten the axial velocity pro®le. The e�ects
of the above axial and secondary ¯ow developments

on the surface heat transfer will be presented in the
following section.

4.2. Surface heat transfer

Figure 5a shows the Nu/Nuo contour plots on the

leading and trailing surfaces for the stationary case.
For the ®rst passage, the heat transfer is high near the
inlet due to the thinner thermal boundary layers.

Downstream, the heat transfer coe�cient decreases
and asymptotically approaches the fully developed
value. The heat transfer in the bend and the outer sur-
face of the second passage is high due to the secondary

¯ows induced by the high pressure gradient in the
bend.
Figure 5b and c show the Nu/Nuo contours on the

leading and trailing surfaces for rotating cases. On the
leading surface, the Nusselt number reaches minimum
in the middle of the ®rst passage and increases signi®-

cantly along the outer surface in the bend and also in
the second passage of the duct. For the trailing sur-
face, the Nusselt number increases sharply in the
streamwise direction and reaches a maximum value in

the bend region. In the second passage, the Nusselt
number decreases gradually along the duct.
The side-averaged (along the spanwise direction)

Nusselt number ratios on all four walls are shown in
Fig. 6. Comparisons were made between the calcu-
lations and the experimental data of Wagner et al. [1].

The numerical results obtained from both the second-
order Reynolds stress closure and two-layer eddy vis-
cosity models are presented to facilitate a detailed

assessment on the e�ects of the Reynolds stress aniso-
tropy. For completeness, the numerical results by
Bonho� et al. [10] using a di�erent Reynolds stress
model with the wall function approach in the FLU-

ENT code are also plotted in the same ®gures.
On the leading surface, the Nusselt number ratio for

the second-moment closure model decreases initially

up to S/D = 7 (this location is close to the measured
data at S/D = 8.5) and then increases further down-
stream. The reason for this Nusselt number decrease is

due to the thickening of the boundary layer caused by
the Coriolis force e�ects. The subsequent increase in
Nusselt number ratio is attributed to the centrifugal
buoyancy induced reversed ¯ow destabilized near-wall

turbulence boundary layer. The Nusselt number ratio
on the trailing surface decreases sharply near the duct
entrance and then increase continuously in the ®rst

passage. The higher Nusselt numbers on the trailing
surface are caused by the Coriolis force pushing the
cooler ¯uid toward the trailing surface which creates a

thinner boundary layer on that side. In the bend sec-
tion, the Nusselt numbers increase on all four side
walls. These increases are due to the mixing of cooler
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¯uids and impingement on the surface as a result of
the high pressure gradient in the bend. The Coriolis

force in the second passage causes an increase of the
leading surface Nusselt number and a decrease of the

trailing surface Nusselt number ratio which is opposite
to that observed in the ®rst channel. Note that the

Coriolis force acts in the opposite direction to that in

the ®rst passage when the ¯uid moves radially inward.
Consequently, the cooler ¯uid is pushed towards the

leading surface instead of the trailing surface.

The sharp reduction in heat transfer along the lead-
ing surface in the ®rst passage is well predicted in the

two-layer calculations. However, the two-layer k±e
model failed to capture the steep increase in heat trans-

fer along the trailing surface in the ®rst passage and in
the bend region. On the other hand, the near-wall sec-

ond-moment solutions are in considerably better agree-

ment with the experimental data on all four side walls.
Since both the two-layer and second-moment calcu-

lations were performed using the same numerical
method and grids, the improved prediction can clearly

be attributed to the inclusion of the Reynolds stress

anisotropy in the present second-order Reynolds stress
closure model. Finally, it should also be noted that the

Fig. 5. Detailed Nusselt number distributions; Re=25,000.
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®rst data point is always higher than the prediction.
This might be due to the sudden-contraction entrance

conditions in Wagner et al. [1] experiments which dif-
fers signi®cantly from the fully-developed ¯ow con-
ditions used in the present calculations. It is also

worthwhile to note the present near-wall second-
moment model yields considerably more accurate pre-

dictions than the Reynolds stress model employed by
Bonho� et al. [10]. The improved predictions may be

attributed to the use of more sophisticated SSG sec-
ond-moment closure in the fully turbulent region as
well as the inclusion of the near-wall closure which

provides detailed resolution of the laminar sublayer
and the bu�er layer adjacent to the channel walls.

In order to provide a thorough evaluation of the
present second-moment closure model, comparisons

have also been made with available data for various
combinations of rotation numbers and coolant-to-wall
density ratios. Fig. 7 shows the e�ect of the rotation

number on the Nusselt number ratio distribution. The
rotation number was varied from 0 to 0.24. The Rey-

nolds number and inlet density ratio were ®xed at
25,000 and 0.13, respectively. It is seen that the present

second-moment results agree very well with the exper-
imental data of Wagner et al. [1] for all three rotation
numbers considered. In general, higher rotation num-

ber induces stronger Coriolis and centrifugal buoyancy
forces. In the ®rst passage, an increase in rotation

number increases the heat transfer on the trailing sur-
face but decreases the heat transfer on the leading sur-

face. In the second passage, the e�ect of rotation is
reversed and considerably weaker than that observed
in the ®rst passage. It is also noted that, in general, the

heat transfer increases with increasing rotation number
on both the inner and outer surfaces.

Fig. 8 shows the e�ect of coolant-to-wall density
ratio on the Nusselt number ratios. The inlet density

ratio (Dr/r ) was varied from 0.07 to 0.22. The Rey-
nolds number and rotation number were held constant
at 25,000 and 0.24, respectively. With increasing den-

sity ratio, the heat transfer increases greatly on the
trailing surface in the ®rst passage. In the second pas-

Fig. 6. Calculated and measured Nusselt number ratios; Re=25,000.
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sage, the heat transfer is not signi®cantly a�ected by
the density ratio. The heat transfer on the inner and

outer walls were also found to be fairly insensitive to
density ratio. The calculated Nusselt number distri-
butions are in close agreement with the experimental

data of Wagner et al. [1] on both the leading and trail-
ing surfaces. The numerical results shown in Figs. 6±8
clearly demonstrated the capability of the present near-

wall second-moment closure model for accurate predic-
tion of complex three-dimensional ¯ow and heat trans-
fer characteristics resulting from the rotation and
strong wall curvatures.

5. Conclusions

A chimera RANS method was employed for the cal-

culation of three-dimensional ¯ow and heat transfer in
rotating two-pass square channels with smooth walls.
The method solved Reynolds-averaged Navier±Stokes

equations in conjunction with a near-wall second-order

Reynolds stress closure model for accurate resolution

of the turbulent ¯ow and thermal ®elds produced by

rotation and buoyancy e�ects. Calculations were also

performed using a two-layer isotropic eddy viscosity

model to facilitate a detailed assessment of the second-

order e�ects due to the Reynolds stress anisotropy.

For the rotating two-pass square channels con-

sidered here, the Coriolis and centrifugal buoyancy

forces produced strong nonisotropic turbulence which

signi®cantly in¯uenced the development of momen-

tum and thermal boundary layers along the duct. It

is therefore important to employ second-moment clo-

sure models which solve each individual Reynolds

stress component directly from their respective trans-

port equations. The present near-wall second-moment

closure model accurately predicted the complex three-

dimensional ¯ow and heat transfer characteristics

resulting from the rotation and strong wall curva-

tures. It provides the most reliable numerical predic-

Fig. 7. E�ect of rotation on Nusselt number ratios; Re=25,000.
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tions which are in good agreement with the exper-
imental data of Wagner et al. [1].
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