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Abstract

A multiblock numerical method has been employed for the calculation of three-dimensional flow and heat
transfer in rotating two-pass square channels with smooth walls. The finite-analytic method solves Reynolds-
averaged Navier—Stokes equations in conjunction with a near-wall second-order Reynolds stress (second-moment)
closure model and a two-layer k—¢ isotropic eddy viscosity model. Comparison of second-moment and two-layer
calculations with experimental data clearly demonstrate that the secondary flows in rotating two-pass channels have
been strongly influenced by the Reynolds stress anisotropy resulting from the Coriolis and centrifugal buoyancy
forces as well as the 180° wall curvatures. The near-wall second-moment closure model provides accurate heat
transfer predictions which agree well with measured data. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Advanced gas turbine blades are subjected to high
thermal stress due to increased turbine inlet tempera-
ture. Efficient internal convective cooling is required to
maintain allowable blade temperatures and lengthen
blade life. Characteristics of flow and local heat trans-
fer in the cooling passages are important in the predic-
tion of blade temperature and life. Some experimental
and numerical studies have been conducted in this
field. We restrict our review to turbulent flow and heat
transfer studies in rotating coolant passages with
smooth walls.

Wagner et al. [1] performed the most thorough
experimental investigation on the effects of Coriolis
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and buoyancy forces on local heat transfer coeffi-
cient distributions of a multi-pass square channel
with smooth walls. They suggested that differences
in heat transfer between rotating and nonrotating
flow conditions is primarily due to the secondary
flows associated with Coriolis and centrifugal buoy-
ancy forces. The local heat transfer coefficients on
the trailing surface of the first coolant passage
(radially-outward flow) increase with increasing ro-
tational speed and wall-to-coolant temperature differ-
ence. However, the local heat transfer coefficients
on the leading surface decrease with increasing ro-
tational speed (up to Ro = 0.24) but increase with
wall-to-coolant temperature differences. The heat
transfer coefficient for the radially inward flowing pas-
sage increases on the leading surface and decreases on
the trailing surface, which is the opposite of the effect
in the outward flowing passage. Since Wagner et al. [1]
experiments are very close to typical turbine blade
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Nomenclature

Dy, D hydraulic diameter

h heat transfer coefficient

K thermal conductivity of coolant

Nu local Nusselt number, /Dy /K

Nu, Nusselt number in fully-developed turbu-
lent nonrotating tube flow

Pr Prandtl number

Re Reynolds number, p W,Dy/u

i inner radius of bend

Ro rotation number, QD /W,

R, radius from axis of rotation

S streamwise distance

T local coolant temperature

T, coolant temperature at inlet

Ty wall temperature

Wy bulk velocity in streamwise direction

o density of coolant

Aplp coolant-to-wall density ratio, (Tw—7,)/Tw

Q rotational speed

0 dimensionless temperature, (T-Ty)/
(TW_TO)

I dynamic viscosity of coolant

cooling conditions, their data has been used by various
researchers as baseline comparisons.

Prakash and Zerkle [2] performed the numerical
prediction of flow and heat transfer in a radially-
outward rotating square duct. They employed the
high-Reynolds-number version of the k—&¢ model
with the wall function approximation. Their results
indicated that the rotational buoyancy effects are
significant under engine operating conditions. They
also concluded that the high-Re k—¢ turbulence
model could not provide accurate heat transfer pre-
dictions and that more refined turbulence models
should be used to get better results. Bo et al. [3]
numerically predicted fully developed turbulent flow
and heat transfer in a radially-outward rotating
square (one-pass) duct. They used three turbulence
models: a k—¢ eddy viscosity model (EVM) with
one equation in the near wall region, a low-Re k—¢
eddy viscosity model, and a low-Re algebraic stress
model (ASM). The k—¢/one-equation EVM produces
reasonable heat transfer predictions, but some de-
ficiencies emerge at the higher rotation number. In
contrast, the low-Re k—¢ EVM predictions showed
unrealistic behavior, while the low-Re ASM results
are close to the Wagner et al. [1] measurements.
Dutta et al. [4] predicted the heat transfer from
leading and trailing sides of a rotating square chan-
nel with radially outward flow (one-pass). They
modeled terms for the Coriolis and buoyancy effects
in the k—¢ transport equations, that show better
agreement with the Wagner et al. [1] experimental
data.

Besserman and Tanrikut [5] calculated the flow and
heat transfer in a stationary square duct with a 180°
bend. They showed that the wall-function approach
failed to accurately predict the heat transfer in high
gradient regions whereas the predictions with wall inte-
gration provided better agreement with the measure-
ments of Wagner et al. [1]. Sathyamurthy et al. [6]

presented numerical results on the rotating square duct
with a 180° bend (two-pass). The standard k—¢ turbu-
lence model with wall function treatment was adopted.
They indicated that either a low Reynolds number k—¢
model, two-layer k—¢ model or second-moment closure
model is needed for accurate prediction of flow and
heat transfer for this complex flow situation. McGrath
and Tse [7] performed the computation on the four
pass, serpentine passage with three 180° turns which is
identical to that of Wagner et al. [1] using the k—¢ tur-
bulence model with two wall treatments: the general-
ized wall function and the classical Van-Driest mixing
length formulation. The two-layer wall integration tur-
bulence model provides improvement over the wall
function simulation. Stephens et al. [8] predicted the
nature of the three-dimensional flow induced by Corio-
lis force, centrifugal buoyancy and a 180° bend in a
rotating two-pass square duct with smooth walls. The
computations were performed using a low Reynolds
number k—w model of turbulence and the computed
heat transfer coefficient compared reasonably well with
Wagner et al. [1] experimental data except for the lead-
ing surface in the first passage, where the heat transfer
coefficients were overestimated by this model. Iacov-
ides et al. [9] explored turbulence modeling issues re-
lated to duct flow influenced by strong curvature and
rotation. They tested four turbulence models: the high-
Re k—¢ model with one-equation model in the near-
wall regions, the high-Re algebraic second-moment
(ASM) closure with one-equation near-wall model, the
low-Re ASM model in which the dissipation rate of
turbulence is obtained algebraically with the wall sub-
layers, and the low-Re ASM model in which the ¢
transport equation is solved over the entire domain.
The computations of flow through a stationary 180°
bend suggested that turbulence anisotropy within the
duct core and the wall sublayer has a strong influence
on the development of flow affected by strong curva-
ture. In stationary case, the two low-Re ASM models
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produced better predictions of the flow development
than the other two turbulence models. In rotating case,
however, the complex flow field downstream of the
bend is not well reproduced by the low-Re ASM
models (they did not consider the energy transport in
the duct). Bonhoff et al. [10] presented the heat trans-
fer predictions for rotating U-shaped coolant channels.
The differential Reynolds stress model (RSM) was
used for the calculation. The averaged heat transfer
predictions were close to Wagner et al. [1] experimental
results in the first passage of the channel, while the
heat transfer in the second passage was overestimated
by RSM.

None of the above-mentioned studies accurately pre-
dicted the flow and heat transfer behaviors in a rotat-
ing two-pass square duct with smooth walls under
typical turbine blade cooling conditions. Particularly,
accurate predictions in the 180° bend and in the second
passage of the two-pass duct are lacking due to the
unsophisticated turbulence closure models used. There-
fore, there is a need to systematically evaluate the
capability of using the second-moment closure model
for accurate resolution of nonequilibrium turbulence
produced by strong wall curvatures and rotational
effects. This paper presents the prediction of flow
characteristics and heat transfer results in a rotating
square duct with a 180° bend which is the first two
passages of the four-pass, serpentine passage that was
experimentally investigated by Wagner et al. [1]. The
computations were mainly performed by a near-wall
second-moment turbulence closure model, while a two-
layer k—¢ eddy viscosity model was also included for
comparison.

2. Governing equations

In the present study, calculations were performed
for a rotating two-pass square channel using the near-
wall second-order Reynolds stress closure model of
Chen [11,12] and two-layer eddy viscosity model of
Chen and Patel [13]. Both models were developed orig-
inally for incompressible flows in nonrotating coordi-
nates. They have been generalized here to include the
effects of rotation and buoyancy. For completeness, we
shall summarize the generalized near-wall second-
moment closure and the two-layer eddy viscosity
model in the following:

2.1. Second-moment closure model

Consider the nondimensional Reynolds-averaged
Navier—Stokes equations in general curvilinear coordi-
nates (&', t), i = 1, 2, 3, for unsteady incompressible
flow

8 m
G AU, =0 M

qU! ) ) )
p< 5 HUUL, + Rf:;> +2pg e Q" U"

T g (@R — QU
=8 [mp,m + (ng " Ufn ).m (2)

where e, is the third-rank permutation tensor and
Q" is the coordinate rotation vector. The metric tensor
gmn and conjugate metric tensor g™ are given in Chen
et al. [14]. R™ =uum is the Reynolds stress tensor.
Overbars denote that the ensemble Reynolds averaging
and the summation convention is used for repeated in-
dices. The subscript, m represents the covariant deriva-
tive with respect to ¢”. U’ and u' are contravariant
components of the mean and fluctuating velocities, ¢ is
time and p is pressure.

In the present study, the flow is considered incom-
pressible since the Mach number is quite low. How-
ever, the density in the centrifugal force terms is
approximated by p=p,T,/T to account for the density
variations caused by the temperature differences. p,
and T, are the density and temperature at the inlet of
the cooling channel.

The temperature 7, is obtained from the energy
equation

oT -
p“p(@ +U"T+ umT'>

D,
= ¢"(KT.0),,+ 7o +® 3)

and @ is the dissipation function defined by

@ = —p[UL U, + ey, + g5 (U, U%, + uwl,um)] - (4)
where T and 7" are the mean and fluctuating tempera-
ture fields, c, is the specific heat at constant pressure,
K is the thermal conductivity, and «”7T’ is the kin-
ematic turbulent heat flux.

The Reynolds stress tensor RY = uiu 7 is the solution
of the transport equations

ORY ” " . " . " "
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where
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m

diffusion by u™ DV = —(u'uum),

m
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diffusion by p" DI = —g""(up'/p) ,, — "' (Wp'/p)

viscous diffusion DY = vg"" RY,

mn

pressure—strain &/ = ( p'/p)(g"uj), + g" u,)

and dissipation & = 2vg™"u’, u;

To solve these equations, appropriate closure models
must be provided for the pressure—strain, diffusion and
dissipation terms. In the present study, the pressure—
strain correlation of Speziale et al. [15] was combined
with the near-wall Reynolds stress closure of Chen
[11,12] for detailed resolution of three-dimensional
boundary layer flow all the way up to the solid walls.
For the sake of completeness, we will briefly summar-
ize the present near-wall second-moment closure model
in the following:

1. Diffusion DY = D + DJ (Daly and Harlow [16])

N k .
Dil — c5'<;R'”"Rf;n> ;CL =022 (6)

m

2. Pressure—strain and dissipation ®7—¢? (Speziale et
al. [15]; Chen [11,12])

& — o = @) + O + b — 2g7; 7
where
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- P
Ci=C+Cj=;

‘ (14)
fu = exp[—(0.0184ReNky)*],

where the model coefficients (C;,C7,C,,C;,C3,C4,Cs)
are equal to respectively 3.4, 1.80, 4.2, 0.8, 1.30,
1.25, 0.40. It should be remarked here that the coef-
ficient in f, was adjusted from 0.015 to 0.0184
based on the numerical optimizations for the pre-
sent test cases. Although the original coefficient of
0.015 worked well for high Reynolds number flows
considered in Chen [12], it was found to produce
too much damping effects for the low Reynolds
number flows considered here. The new coefficient
reduces the extent of the near-wall damping zone
and is more consistent with the two-layer k—¢
results. It is also worthwhile to note that the effects
of the damping function f,, diminishes exponentially
away from the solid surfaces with #% =0 in the fully
turbulent regions. Therefore, the present near-wall
Reynolds stress model automatically recovers the
high-Re SSG second-moment closure of Speziale et
al. [15] in the far-field. A more detailed description
of the present near-wall second-moment closure is
given in Chen [11,12].

In general, the turbulent heat fluxes 7T’ may also
be solved directly using second-order closure models
such as those shown in Launder [17]. In the current
study, however, we will use the generalized gradient
diffusion hypothesis (GGDH) given in Bo et al. [3]

T = —C()ISR’””T,,,; Cp=0.225 (15)
£

It should be noted that the Cy value used here is some-
what lower than that proposed by Bo et al. [3] based
on extensive numerical optimizations performed in the
present calculations.

To complete the Reynolds stress closure, the rate of
turbulent kinetic energy dissipation ¢ must also be
modeled. In the present study, the low Reynolds num-
ber model of Chen [12] was adopted as follows:

e

k
9t + Umg,m = {(ngn + CEERmn)g,n},m

(16)

*

+Cal+ Cafi)sP = cf,zfs% ye

where the model coefficients are (C, C,, Cp,
Co)=(0.15, 1.35, 1.8, 1.0). The near-wall damping
function f;, f, and the source terms ¢ and &* are given
in Chen [11,12].
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2.2. Two-layer k—e model

In order to facilitate a detailed assessment of the
present near-wall second-order Reynolds stress clo-
sure for turbulent flow and heat transfer predictions,
calculations were also performed using the two-layer
isotropic eddy viscosity model of Chen and Patel
[13]. In this two-layer approach, the Reynolds stresses
are related to the mean rate of strain by

—pR7 = 20,87 — 34" pk, (17)

where u, is the eddy viscosity and k = g,j-ﬁ/z is the
turbulent kinetic energy. S¥ is the contravariant com-
ponents of the rate of strain tensor given in Eq. (12).
Similarly, the turbulent heat fluxes can be related to
the mean temperature gradient as follows:

—pu" T = Iﬁt—;g”"’ T,Pr,=0.9, (18)
t

where Pr; is the turbulent Prandtl number. Substi-
tution into (2) and (3) yields momentum and energy
equations for eddy viscosity turbulence modeling

AU’ ; ;
p( Py _'_Umem) +pgt/e[anmUn

+pgm(QQ"E" — Q"Q'E)
(19)

= =" (p+30k) +2u,S™

+ (4 p)g" U,

oT noH
7+UmT_n>: nn 2o T 20
p(az m)=g {(Pr Prt> ""},m (20)

where Pr is the Prandtl number. Egs. (19) and (20) are
closed using the two-layer turbulence model of Chen
and Patel [13]. The approach utilizes a two-equation
k—e model for most of the flow field, but a one-
equation k—/ model in the viscous sublayer and buffer
zone. The prescribed length scale (/) circumvents nu-
merical problems often encountered with near-wall dis-
sipation calculations and reproduces the universal law-
of-the-wall profiles in the laminar sublayer, buffer
layer and logarithmic regions.

In the fully turbulent region, the conservation
equations for turbulent kinetic energy and its dissipa-
tion rate can be written:

ok m
p(m +U km>

:gr71r1{(ﬂ+ %)k’”} +P+ Py — pe (21)
m

0¢
— + U™
p(a[ + P,m>

&
- g{ (u + g—)s} +2(CaP + CaPy— Cape) (22)

&

where

P =2g,uS™U" (23)

Py =t g (" — Q" ENT, (24)
PrT ’

The buoyancy generated turbulence production Py
was proposed by Snider and Andrews [18] and the
model coefficients (C,, C;1, Cp, Cgz3, 0y, o) are fixed
constants equal to 0.09, 1.44, 1.92, 0.9, 1.0, 1.3, re-
spectively.

In the near-wall region, the rate of turbulent dissipa-
tion is specified in terms of k rather than being com-
puted from (22). From Chen and Patel [13]:

k3/2
= 25
6= (25)
where 7, is a dissipation length scale given by
ly=Cpy[l —exp(—R,/4,)l; R, =ky/v (26)

With k and ¢ known, the eddy viscosity is found from
Vi = Cu“/%/w /;t = C/)’[l - eXP(—R,\r/Au)] (27)

The constants C,, A, and A, are chosen to yield a
smooth distribution of eddy viscosity between the two
regions, and take the values (C/:0.418C,j3/4, A,=70,
A,=2C,). A more detailed description of the two-layer
model is given in Chen and Patel [13].

3. Chimera RANS method

In the present study, the chimera RANS method of
Chen [11,12] and Chen and Chen [19] has been
further extended to include the effects of rotation
and buoyancy. The present method solves the mean
flow and turbulence quantities in arbitrary combi-
nation of embedded, overlapped, or matched grids
using a chimera domain decomposition approach. In
this approach, the solution domain is first decom-
posed into a number of smaller blocks which facili-
tate efficient adaption of different block geometries,
flow solvers and boundary conditions for calculations
involving complex configurations and flow conditions.
Within each computational block, the finite-analytic
numerical method of Chen and Chen [20] and Chen
et al. [14] was employed to solve the unsteady RANS
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equations on a general curvilinear, body-fitted coordi-
nate system. The coupling between the pressure and
velocity is accomplished using a hybrid PISO/SIM-
PLER algorithm given in Chen and Patel [21] and
Chen and Korpus [22]. The method satisfies continu-
ity of mass by requiring the contravariant velocities
to have a vanishing divergence at each time step.
Pressure is solved using the concept of pseudo-
velocities, and when combined with the finite-analytic
discretization gives the Poisson equation for pressure.
To ensure the proper conservation of mass and
momentum between linking grid blocks, the grid-
interface conservation techniques of Hubbard and
Chen [23] and Chen and Chen [19] were employed to
eliminate unphysical mass source resulting from the
interpolation errors between the chimera grid blocks.

L/D, =14
R,/D, =42
/D, =1.25
A: Z/Dh =3.44
B : Z/D, = 8.39
C:Z/D =13.08
D

: Midsection
of Bend ‘

m

:Z/D, =13.36

<+-B

More detailed descriptions of the chimera RANS
method were given in Chen and Huang [24] and
Chen and Liu [25].

4. Results and discussion

Calculations were performed for the multi-pass
square channel with smooth walls as tested by Wagner
et al. [1]. Fig. 1 shows the geometry and an enlarged
view of the numerical grids around the 180° bend.
Two of the four side walls in the rotation direction are
denoted as the leading and the trailing surfaces, re-
spectively. The other two side walls are denoted the
inner and the outer surfaces. The length of both the
first pass and second pass are 14Dy. The inner radius

<+-C

I
i

it I
e ! H
(i il |”

wmmmnim. ||||l
il
Il

F :2/D, = 6.66 Dy,

Fig. 1. Geometry and numerical grids.
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of curvature of the bend is 1.25D;, and the radius from
axis of rotation is 42Dy,. All walls are heated to a con-
stant temperature. In this paper, the Reynolds number
was fixed at 25,000 which is the typical operating con-
ditions of medium size gas turbines. Comparisons
between the calculations and measurements were made
for three different rotation numbers of 0, 0.18 and
0.24, and four coolant-to-wall density ratios of 0, 0.07,
0.13 and 0.22. The Nusselt numbers presented herein
were normalized with a smooth tube correlation (Kays
and Crawford [26]) for fully developed, nonrotating,
turbulent flow

Nuo = 0.0176Re"® (28)

The present numerical grid was generated using an
interactive gridding code GRIDGEN developed by
Steinbrenner et al. [27]. It was then reblocked into
several interlocked computational blocks to facilitate
the implementation of near-wall turbulence models
and specification of boundary conditions. To provide
adequate resolutions of the viscous sublayer and buf-
fer layer adjacent to a solid surface, the minimum
grid spacing in the near-wall region is maintained at
10~ of the body length which corresponds to a wall
coordinate y* of the order of 0.1. In all calculations,
the root-mean-square (rms) and maximum absolute
errors for both the mean flow and turbulence quan-
tities were monitored for each computational block to
ensure complete convergence of the numerical sol-
utions. A convergence criterion of 107> was used for
the maximum rms error in all computational blocks.
In all cases, the computer CPU time required for the
second-moment closure model is about twice of that
for the two-layer eddy viscosity model.

In the present calculations, a fully-developed turbu-
lent boundary layer profile was used at the entrance of
the duct. Since the fully-developed profiles for mean
flow and turbulence quantities are not known analyti-
cally, a separate calculation was performed for a
straight duct to provide the inlet conditions at the duct
entrance. At the exit of the duct, the flow was assumed
to be parabolic with zero-gradient boundary conditions
for mean velocity and all turbulence quantities, while
linear extrapolation was used for the pressure field.
The coolant temperature was 7T, (ie., 0=(T—T,)/
(Tw—T,)=0) at the entrance of the duct and the wall
temperature was kept constant at 7=T,, (0=1) on all
side walls.

A grid-refinement study was performed using four
different grid distributions of 41 x 41 x 111, 41 x 41 x
175, 61 x 61 x 111 and 81 x 81 x 111 with the im-
plementation of a general Chimera domain decompo-
sition technique (Hubbard and Chen [23]; Chen and
Chen [19]). The grid refinement in the axial direction
has produced only minor changes in the bend region.

Fig. 2 shows a comparison of the calculated Nusselt
numbers on the leading surface (Ro=0.24, Ap/
p=0.13) for 41 x 41 x 111, 61 x 61 x 111 and 81 x 81
x 111 grid distribution with two-layer and second-
moment models. In the two-layer model, the Nusselt
number in the bend was improved by 9 and 15% re-
spectively with 61 x 61 x 111 and 81 x 81 x 111 grids.
The Nusselt number, however, was not significantly
changed in the second-moment results except for the
turning section where a 10% improvement was
observed. All the results presented in the following dis-
cussions are based on an 81 x 81 x 111 grid for the
two-layer model and an 41 x 41 x 111 grid for the sec-
ond-moment model.

4.1. Velocity and temperature fields

The velocity, temperature fields and side-averaged
Nusselt numbers for both the nonrotating and rotating
square duct with 180° bend are presented in this sec-
tion. For the sake of brevity, we shall present only the
details of the three-dimensional velocity and tempera-
ture fields for the second-moment solutions since the
second-order Reynolds stress model produced more
accurate results for all test cases considered. The two-
layer k—¢ results will be discussed only in the compari-
son of Nusselt number distributions to quantify the
effects of the Reynolds stress anisotropy.

Figure 3 shows the calculated secondary flow vectors
and temperature contours at several axial stations
defined in Fig. 1 for the nonrotating case. It is seen
from Fig. 3C that the anisotropy of the turbulent Rey-
nolds stresses produced small secondary corner vortices
in the first passage. In the bend, the centrifugal forces
and the associated pressure gradients (low pressure at
inner surface, high pressure at outer surface) produced
two counter-rotating vortices as shown in Fig. 3D
which convected fluid from the core toward the outer

Leading Surface ° Wagner et al.[1]
3.5F (Ro=0.24, Ap/p=0.13) — — — — 41x41(Two-Layer)
F _4’\= —.—-—-— 61x61(Two-Layer)
3 F A\ 81x81(Two-Layer)
41x41(Second-Mo)
g 2.5 R 81x81(Second-Mo)
< 2
=}
Z15 a\
1F
0.5F e _.+ tumn
r ™ -
(1) SR I AN SRS US  EE S RSO i
0 20

Fig. 2. Grid refinement study; Re = 25,000.
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Outer surface

~ N

Outer surface

Trailing surface
Leading surface

Trailing surface
NN
Leading surface

0.0)

Leading surface

(Ro

Trailing surface

Leading surface

Trailing surface

\

Inner surface

A
Inner surface

Fig. 3. Dimensionless temperature (0=(7T—T,)/(Tw—T,)) and
secondary-flows for nonrotating duct.

surface. This secondary flow started to decrease in the
second passage and vanished almost completely at the
end of the second passage. The left column of Fig. 3
shows the isothermal contours in the duct. Before the
bend, the cooler fluids are located in the core region
(Fig. 3C). After the bend, however, the cooler fluid is
pushed toward the outer surface by the centrifugal
force induced by the streamline curvatures. This leads
to steep temperature gradients and hence high heat
transfer coefficients on the outer wall after the bend as
shown in Fig. 3D-F.

Figure 4 shows the cross-stream velocity vectors and
the isothermal contours for the rotating case at
selected planes of Z/D,=3.44, 8.39, 13.08 (locations
A, B and C in Fig. 1) in the first passage, location D
in the bend and Z/D;,=13.36, 6.66 (locations E and F)
in the second passage. In the first passage, the Coriolis
forces produce a cross-stream flow pattern which

pushes the cold fluid from the core towards the trailing
surface and then returns along the side walls (i.e.,
inner and outer surfaces) where the fluid is heated. The
secondary flow induced by the Coriolis forces also dis-
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torts the axial velocity profiles. Initially a two-vortex
secondary flow is formed near the inlet of the duct.
After about 3.4 diameters of flow development, an
extra pair of counter-rotating vortices is observed
along the leading surface as shown in Fig. 4A. Farther
downstream, the two vortex structure is again reestab-
lished (Fig. 4B). This transient entry phenomenon is
also predicted by the present two-layer eddy viscosity
model, but the location of appearance of the four-vor-
tex pattern was farther downstream than that predicted
by the second moment closure model.

In the bend, the secondary flow structure formed in
the first passage is completely destroyed as shown in
Fig. 4D. The rotation-induced radially outward flow,
as it enters the bend section of the duct, is accelerated
asymmetrically in the cross section. The heavier cold
fluid near the trailing surface is first accelerated and
then followed by the lighter fluid near the leading sur-
face in the duct cross section. This causes the fluid
near the trailing surface to be thrown towards the
outer side wall, resulting in the clockwise circulation in
the middle of the bend region.

In the second passage, the Coriolis force acts in the
opposite direction, compared to the one in the first
passage, which pushes the cold fluid towards the lead-
ing surface. Fig. 4E shows the formation of two large
vortices with the larger one near the leading surface
and the smaller one near the trailing surface. This sec-
ondary flow structure is produced by the interaction of
the circulation generated in the bend and the Coriolis
force due to the duct rotation. Farther downstream at
location 4-F, the peak crossflow velocities are still as
high as 9% of W}. The secondary flow at this station
is caused primarily by the Coriolis force as the effect
of bend diminishes gradually in the second passage.

For the nonrotating case, the computed axial vel-
ocity profiles (not shown) shift toward the outer sur-
face in the bend, but return quickly to a fairly flat
profile in the second passage. A detailed examination
of the solutions reveals no axial flow reversal in this
stationary duct. For the rotating case, the Coriolis
forces push the cold fluids toward the trailing surface
so that the centrifugal buoyancy force tends to slow
down the lighter fluid, producing a thicker boundary
layer near the leading surface and accelerates the
heavier fluid near the trailing surface. Thus, it causes
flow reversal in the streamwise direction on the leading
surface. In general, the reverse flow region in the first
passage increases with increasing coolant-to-wall den-
sity ratio and buoyancy. On the other hand, the Corio-
lis force in the second passage acts in the opposite
direction and pushes the cold fluids toward the leading
surface. Thus, the centrifugal buoyancy forces acceler-
ate the lighter fluid near the trailing surface and, con-
sequently, flatten the axial velocity profile. The effects
of the above axial and secondary flow developments

on the surface heat transfer will be presented in the
following section.

4.2. Surface heat transfer

Figure 5a shows the Nu/Nu, contour plots on the
leading and trailing surfaces for the stationary case.
For the first passage, the heat transfer is high near the
inlet due to the thinner thermal boundary layers.
Downstream, the heat transfer coefficient decreases
and asymptotically approaches the fully developed
value. The heat transfer in the bend and the outer sur-
face of the second passage is high due to the secondary
flows induced by the high pressure gradient in the
bend.

Figure 5b and c¢ show the Nu/Nu, contours on the
leading and trailing surfaces for rotating cases. On the
leading surface, the Nusselt number reaches minimum
in the middle of the first passage and increases signifi-
cantly along the outer surface in the bend and also in
the second passage of the duct. For the trailing sur-
face, the Nusselt number increases sharply in the
streamwise direction and reaches a maximum value in
the bend region. In the second passage, the Nusselt
number decreases gradually along the duct.

The side-averaged (along the spanwise direction)
Nusselt number ratios on all four walls are shown in
Fig. 6. Comparisons were made between the calcu-
lations and the experimental data of Wagner et al. [1].
The numerical results obtained from both the second-
order Reynolds stress closure and two-layer eddy vis-
cosity models are presented to facilitate a detailed
assessment on the effects of the Reynolds stress aniso-
tropy. For completeness, the numerical results by
Bonhoff et al. [10] using a different Reynolds stress
model with the wall function approach in the FLU-
ENT code are also plotted in the same figures.

On the leading surface, the Nusselt number ratio for
the second-moment closure model decreases initially
up to S/D = 7 (this location is close to the measured
data at S/D = 8.5) and then increases further down-
stream. The reason for this Nusselt number decrease is
due to the thickening of the boundary layer caused by
the Coriolis force effects. The subsequent increase in
Nusselt number ratio is attributed to the centrifugal
buoyancy induced reversed flow destabilized near-wall
turbulence boundary layer. The Nusselt number ratio
on the trailing surface decreases sharply near the duct
entrance and then increase continuously in the first
passage. The higher Nusselt numbers on the trailing
surface are caused by the Coriolis force pushing the
cooler fluid toward the trailing surface which creates a
thinner boundary layer on that side. In the bend sec-
tion, the Nusselt numbers increase on all four side
walls. These increases are due to the mixing of cooler
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(a) Leading surface and Trailing surface (Ro=0.0)

(b) Leading surface (R0=0.24, Ap/p=0.13)

(c) Trailing surface (R0=0.24, Ap/p=0.13)
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Fig. 5. Detailed Nusselt number distributions; Re = 25,000.

fluids and impingement on the surface as a result of
the high pressure gradient in the bend. The Coriolis
force in the second passage causes an increase of the
leading surface Nusselt number and a decrease of the
trailing surface Nusselt number ratio which is opposite
to that observed in the first channel. Note that the
Coriolis force acts in the opposite direction to that in
the first passage when the fluid moves radially inward.
Consequently, the cooler fluid is pushed towards the
leading surface instead of the trailing surface.

The sharp reduction in heat transfer along the lead-
ing surface in the first passage is well predicted in the

two-layer calculations. However, the two-layer k—¢
model failed to capture the steep increase in heat trans-
fer along the trailing surface in the first passage and in
the bend region. On the other hand, the near-wall sec-
ond-moment solutions are in considerably better agree-
ment with the experimental data on all four side walls.
Since both the two-layer and second-moment calcu-
lations were performed using the same numerical
method and grids, the improved prediction can clearly
be attributed to the inclusion of the Reynolds stress
anisotropy in the present second-order Reynolds stress
closure model. Finally, it should also be noted that the
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first data point is always higher than the prediction.
This might be due to the sudden-contraction entrance
conditions in Wagner et al. [1] experiments which dif-
fers significantly from the fully-developed flow con-
ditions used in the present calculations. It is also
worthwhile to note the present near-wall second-
moment model yields considerably more accurate pre-
dictions than the Reynolds stress model employed by
Bonhoff et al. [10]. The improved predictions may be
attributed to the use of more sophisticated SSG sec-
ond-moment closure in the fully turbulent region as
well as the inclusion of the near-wall closure which
provides detailed resolution of the laminar sublayer
and the buffer layer adjacent to the channel walls.

In order to provide a thorough evaluation of the
present second-moment closure model, comparisons
have also been made with available data for various
combinations of rotation numbers and coolant-to-wall
density ratios. Fig. 7 shows the effect of the rotation
number on the Nusselt number ratio distribution. The
rotation number was varied from 0 to 0.24. The Rey-

nolds number and inlet density ratio were fixed at
25,000 and 0.13, respectively. It is seen that the present
second-moment results agree very well with the exper-
imental data of Wagner et al. [1] for all three rotation
numbers considered. In general, higher rotation num-
ber induces stronger Coriolis and centrifugal buoyancy
forces. In the first passage, an increase in rotation
number increases the heat transfer on the trailing sur-
face but decreases the heat transfer on the leading sur-
face. In the second passage, the effect of rotation is
reversed and considerably weaker than that observed
in the first passage. It is also noted that, in general, the
heat transfer increases with increasing rotation number
on both the inner and outer surfaces.

Fig. 8 shows the effect of coolant-to-wall density
ratio on the Nusselt number ratios. The inlet density
ratio (Ap/p) was varied from 0.07 to 0.22. The Rey-
nolds number and rotation number were held constant
at 25,000 and 0.24, respectively. With increasing den-
sity ratio, the heat transfer increases greatly on the
trailing surface in the first passage. In the second pas-
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sage, the heat transfer is not significantly affected by
the density ratio. The heat transfer on the inner and
outer walls were also found to be fairly insensitive to
density ratio. The calculated Nusselt number distri-
butions are in close agreement with the experimental
data of Wagner et al. [1] on both the leading and trail-
ing surfaces. The numerical results shown in Figs. 6-8
clearly demonstrated the capability of the present near-
wall second-moment closure model for accurate predic-
tion of complex three-dimensional flow and heat trans-
fer characteristics resulting from the rotation and
strong wall curvatures.

5. Conclusions

A chimera RANS method was employed for the cal-
culation of three-dimensional flow and heat transfer in
rotating two-pass square channels with smooth walls.
The method solved Reynolds-averaged Navier—Stokes

equations in conjunction with a near-wall second-order
Reynolds stress closure model for accurate resolution
of the turbulent flow and thermal fields produced by
rotation and buoyancy effects. Calculations were also
performed using a two-layer isotropic eddy viscosity
model to facilitate a detailed assessment of the second-
order effects due to the Reynolds stress anisotropy.
For the rotating two-pass square channels con-
sidered here, the Coriolis and centrifugal buoyancy
forces produced strong nonisotropic turbulence which
significantly influenced the development of momen-
tum and thermal boundary layers along the duct. It
is therefore important to employ second-moment clo-
sure models which solve each individual Reynolds
stress component directly from their respective trans-
port equations. The present near-wall second-moment
closure model accurately predicted the complex three-
dimensional flow and heat transfer characteristics
resulting from the rotation and strong wall curva-
tures. It provides the most reliable numerical predic-
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tions which are in good agreement with the exper-
imental data of Wagner et al. [1].
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